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Abstract:  This  paper  presents  an  adaptive control system for coordination  and  control 
of a fleet of micro-spacecraft  moving in formation. A Beet  of spacecraft are given a s  
a collection of system which interact  with each other in a cooperative  manner to 
achieve a common objective. To provide a desired formation, basic mathematical 
models for  controlled  movement of rigid bodies in free space  is  presented followed 
by the adaptive  control law for formation  manipulations and  formation keeping. The 
formation  control performance in the presence of constant but unknown  disturbances 
is illustrated by simulations. Copyright 0 1 9 9 8  IFAC 
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1. INTRODUCTION 

The concept of multiple  coordinated  spacecraft is 
emerging as an  attractive  alternative  to  the  tradi- 
tional  single  large'spacecraft for both commercial 
satellite  communications and space science  mis- 
sions. There  are several advantages to  this con- 
cept. The most important of these, is the ability to 
make the mission  much  more robust by eliminat- 
ing  single  point failures. The multiple  spacecraft 
approach will also impose less requirements and 
limitations on launch vehicles and thereby reduc- 
ing the rnission cost. 

In  the  case of monolithic  space  interferometers, 
stringent  requirements  on control of a highly 
complex structures is a precursor to instruments 
ability for  successful astrontetry  and imaging. In 
recent  years, growing emphasis is placed on the 
concept of separated spacecraft  interferometry 
(SSI). The SSI concept envisioned the collecting 
apertures  to  be located on separate spacecraft 
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while central  combining  instruments to be lo- 
cated on yet  another  spacecraft. A virtual  struc- 
ture is therefore  developed  without the real  need 
for maintaining the necessary structural rigid- 
ity. The SSI provides measurements unachievable 
with  other techniques and allows  long  baseline 
lengths  and  orientation changes without  a need  for 
high precision control. However, separated space- 
craft  systems  introduce new  complexities and 
challenges. For example,  initialization and  stabi- 
lization of the formation are two  new  problems 
that have  no analogue in  the single spacecraft 
paradigm.  Once these  are achieved, the challenge 
of conducting a variety of precision rotations, for- 
mation  contractions and expansions will be re- 
quired to execute a science scenario. These  maneu- 
vers are required, for example, for interferometric 
imaging to fill in the plane of the sparse  aperture 
formation. In addition to those  maneuvers that 
are science driven, there must  also  be  maneuvers 
for orbit  maintenance,  control  strategies for coop 
erative attitude  and  station keeping, maneuvers 
for formation alignment and  calibration,  and the 
optimization of formation resources and perfor- 



rnance. IJntfer NASA's New ~Miller~nillrn Program, 
the Deep Space Mission 3 mission (DSS) is a 
concept for a separated-spacecraft~raft optical  inter- 
ferorneter. The interferometer  instrument will be 
distributed over three  small  spacecraft: two  space- 
craft will serve as collectors, directing  starlight 
toward a third  spacecraft which will combine 
the light  and perform the interferometric detec- 
tion. The mission is nominally  deployed in a low- 
disturbance  solar  orbit to minimize the  station- 
keeping burden. The interferometer baselines may 
be  variable from 5 m to 1 km. Low-bandwidth cor- 
rections for 1 centimeter and 1 arc-minute  station- 
keeping and relative attitude errors  may  be ac- 
complished by spacecraft control with electric- 
propulsion or a cold-gas system;  high-bandwidth 
corrections for 1 nanometer  and 0.1 arc-second 
stationkeeping  and  relative  attitude errors would 
be accomplished  by  feedforward to interferome- 
ter  compensators  and  actuators  in  the combiner 
spacecraft. 

Although  control of a single spacecraft is  based 
on  well established  control  theory concepts and 
methodologies, the control  systems for multiple 
spacecraft moving in  formation  require architec- 
tures which differ from those of conventional sin- 
gle spacecraft  control  systems.  To provide a de- 
sired  formation]  basic  mathematical models for 
controlled movement of each  micro-spacecraft in 
free space is needed. The control laws  for the 
coordination of spacecraft attitude  during motion 
to achieve a specified objective (e.g. orient each 
spacecraft along a given direction) is an integral 
part of control  laws  for formation keeping and 
relative attitude alignment. This  paper  presents 
an adaptive  control  system for the coordination 
and  control of a fleet of micro-spacecraft  moving 
in  formation in  the presence of constant  distur- 
bances. A fleet of spacecraft  are given as a collec- 
tion of systems which interact  with each other  in 
a cooperative  manner to achieve a common  objec- 
tive. The time-domain behavior of the feedback- 
controlled  formation flying for typical  low-Earth 
orbits is studied  both  analytically  and via  com- 
puter simulation.  Emphasis is placed on the condi- 
tions for ensuring  formation  stability  and control 
performance in the presence of various types of 
constant but unknown disturbances. 

2. DYNAMICS OF MULTJPLE SPACECRAFT 

Following the convention  in [4] ,  we regard each 
spacecraft as a  point mass  moving  in free space 
under the influence of its  environment] inclllding 
the  gravitational field, aerodynamics, solar radia- 
t,ion, as well as magnetic field [5]. We assume the 
fleet consists of N spacecraft. We shall use the 
following coordinate system  to derive the equa- 
tions of motion for spacecraft in  three-dimensional 

Euclidean space R": an inertial  coordinate  system 
.To and  a  set of moving coordinate  systems Ti, 
i = 1, . . . , N .  The origin 0; and  the axes of .Fi are 
at  the center of mass and along the principal  axes 
of inertia of the  i-th spacecraft respectively. 

Let u be  an  arbitrary vector in a moving  coor- 
dinate system, which rotates  in 3 0  with  angular 
velocity w,  the  time derivative of a with  respect 
to 30 is related to  the  time derivative 8 of a with 
respect to Ti as follows: 

da  da 
- = - " W X U .  
dt  dti 

First, we consider the translational  motion of the 
spacecraft.  In the coordination of spacecraft flying 
in formation, we are  interested  in  the  relative 
motion between a  pair of spacecraft,  say i and j. 
Suppose the positions of the mass centers of two 
spacecraft in TO are ri and rj, respectively. Then 
their  relative  position is: 

From Newton's law, the equation of motion  for 
the  j-th spacecraft  relative to Ti is as follows: 

where f d j  and f c j  are  disturbance  and  control 
forces respectively; p j  is the linear  momentum of 
the  j-th spacecraft, defined as follows: 

Mj is the mass of the spacecraft j; uj is its linear 
velocity in T o ;  ri is also the origin of Ti in TO. 
From (3) and (4), one has 

where d:, and uj are linear  accelerations due  to 
disturbance  and  control forces respectively: 

In ( 5 ) ,  let j = i. When p i j  = 0, we  have 

Therefore, the  last two equations  imply 



Now using ( I ) ,  we obtain 

and 

On the other hand,  the dynamics of angular 
velocities of the spacecraft  relative to 7 0  are 
described by the following Euler’s  equations: 

where i = 1, * ,  N ;  Ii is the tensor of inertia 
associated  with the  i-th spacecraft;  and 

Ti := Td,  + T& (12) 

is the  external  torque applied to  the spacecraft, in- 
cluding  disturbance  torque Tdi and  control  torque 
7,. Equation ( 1  1) can be  written as 

Using the above  relation, (10) and (8) imply 

d2pij “- + I;1 (3-2 - wz x (Ii.2)) x p i j  + 2wix 

Therefore, (13) and (14) completely  describe the 
dynamics of the relations  with each other  among 
the N spacecraft. 

3. FORMATION  KEEPING  PROBLEM 

A fleet of spacecraft Rying in formation  can be 
achieved in  many ways, and various schemes for 
generating  certain  formation patterns  are dis- 
cussed in 141. As control law  design  for formation- 
keeping of each formation pattern is similar,  in 
what follows, we consider a particular  formation 
pattern. 

3.1 Dynamic Equations for Formation Keeping 

Suppose several spacecraft  are chosen as leaders 
for formation flying. There motions serve as a 
skeletal pattern for the fleet. The desired motion 
for the remaining  spacecraft may be  determined 
by the spacecraft in their specified neighborhood. 

‘The following is one of the  methods for specifying 
the mot,ion of a spacecraft 141. 

LetZi(t) C {1,2,...,N}\{i}denotetheindexset 
consisting of the labels of specified Ni neighbors 
of the  i-th spacecraft, whose position at  time t is 
ri(t) .  Let r j ( t )  is the position of the  j-th spacecraft 
at time t for j E X % ( t ) .  Let p i j ( t )  = r,(t) - ri(t). 
We may set the desired  motion &(t)  for the  i-th 
spacecraft as follows: 

In formation-keeping control  design, the objective 
calls for the  i-th spacecraft to track  the  motion 
d i ( t )  defined by (15). The tracking  error for the 
i-th spacecraft is defined by 

Note that each p i j ( t )  satisfies (14). To facilitate 
the control design, the dynamics for the tracking 
error &(t) defined in (16) is derived  using (14) LIS 

follows: 

2wi x - +w, x (mi x E$) = dEj 
dt ,  

The formation keeping problem  can be defined as 
follows, 

Definition 1. Formation Keeping Consider a fleet 
of N spacecraft, the reference position of the  i-th 
spacecraft is  defined LIS d i ( t )  in (15 ) .  The forma- 
tion keeping is to design a feedback controller  such 
that the  actual  position ri(t) for the spacecraft 
closely tracks &(t)  in the sense that  the tracking 
error Ei(t) = &(t)  - ri(t) satisfies 

t-m 
lim Ei(t) --+ 0. 

3.2 D f f e r e n t  Sources of  Disturbances 

The disturbances  entering the system  equations 
can  be classified as disturbance  torques  and dis- 
turbance forces. Both  are due  to  the gravitational 
field, solar radiation,  aerodynamics (for low orbit 
mission), or magnetic field. The external  torque 
ri consists of disturbance  torque ~ d i  and  control 
torque r&: r, = Tdi + rCi The disturbance  torque 



7& inclldes gravit,y gradient, solar radiation,  aero- 
dynamic,  and  rnagnetic  torques (for a detailed 
discussion, see 151). Those  torques vary slowly 
during  flight.  Therefore, 7 d ,  can be  assumed to 
be a constant  parameter  vector. 

The disturbance  accelerations d j  ( j  E T,(t)) and 
d, include  those  generated by gravity  gradient, so- 
lar  radiation,  aerodynamic,  and  magnetic forces. 
Their  variations  can also be  neglected. We define 

,then  the system is input-output  lineariztd,  and 
the input-output  dynamics  with state x = [ x ~ x 2 x 3 ]  
is 

X = A x + B u  
1J CX 

where 

and  the zero dynamics is 

then it can be viewed as a  constant  parameter 
vector. With above  discussion, 
design, we define 

as a  constant  parameter  vector. 

in the following 

(20) 

3.3 State-space Equation and Feedback Linearization 

To facilitate  control law design, we first give the 
state-space  equation of the relevant dynamics for 
the formation keeping problem. Let the  state 
vector be defined by x1 = Ei, x2 = Ei := d% 
x3 = w,, and  the  output vector  be y = E;. 

Rom (17) and (13), we have the following 9- 
th  order state space  equation for the formation 
keeping problem: 

d t ,  7 

where f 0 (1c1 ,22 ,  z3) := 1,;' (x3 X (12x3) - T&) X 

x1  - 2x3 X x2 - x3 X (x3 X 5 1 )  + u, and u := 
1 zjE1,(t) uj, which is known  in this design; 

f1 ( X I )  := [-I*:"(xl)] I (22) 

with M(x1) being a 3 X 3-matrix  function  such 
that 

< ( 5 3 , 7 * )  := I*"(TZ - x3 x ( I J 3 ) ) .  (24) 

Note that if  .Q is measurable,  then the system (21) 
is input-output linearizable.  In  fact, if we replace 
ui i n  (21) 

% = f O ( X l , X 2 ,  2 3 )  - f l ( X 1 ) O  - u (25) 

The system  can be designed  using  linear  tech- 
niques, one of the approaches  is to use Lyapunov 
technique which  was presented in [4]. 

4. ADAPTIVE CONTROL APPROACH 

Actually, in the control design for formation keep 
ing, we don't need to directly  measure  the un- 
known parameter 6. This can be achieved using 
adaptive control method. 

4.1 Problem Formulation 

Here, we formulate the formation keeping problem 
without the measurement of the  disturbances as 
an adaptive control problem.  In the design, we 
assume that  the information Ei, E, and w, are 
available. If the  parameter 8 is known, we can  use 
the foregoing input-output  linearization  result. 
Suppose that  the following feedback control  is 
chosen 

so that  the closed-loop system i = ( A  + B F ) x  
is  asymptotically  stable, then  there exists  a Lya- 
punov function 

V ( x )  = xTPx (30) 

such that the following Lyapunov  equation  holds, 

P ( A  + B F )  + ( A  + BF)TP = -Q < 0. (31) 

Moreover, 

lim &(t)  = lim x l ( t )  = 0.  (32) 
t-m t-m 

Since the parameter 6 is not known in this design, 
control law (33) cannot be implemented. But we 
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Fig. 1. Adaptive  Control Law  for the  i-th Space- 

craft 
can still use the controller  with the  parameters 
replaced by their estimates p. Let the  parameter 
update law be given by: 

where p is the  parameter estimate. The control 
input becomes 

Now, let 

P = [0flT(.1)] px,  (39) 

then 

V(z,p) = x T ( P ( A  + B F )  + ( A  + B F ) T P ) z  = 
-xTQx 5 0. (40) 

Next, we show that  the  adaptive control law (34)- 
(35): 

i P = [o f,'(.l)] p x  
% z= f O ( z l ,  5 2 ,  2 3 )  + fl(x:l)p + Flzl + F222, 

(41) 

indeed solves the  adaptive control problem for 
formation keeping. First we show that x ( t )  "+ 0 
as t -+ 03 with the implementation of the above 
control law. Note from (40) that  the Lyapunov 
function V(z,p)  is decreasing  along the trajectory. 
Therefore, the zero state of system (36) and (39) 
is Lyapunov stable, and x and p - 0 are  bounded. 
Also note that 

T 

The block diagram for the  adaptive system  is 
illustrated in Fig. 1. 

The adaptive  control for the formation keeping 
problem is defined as follows: 

Definition 2. Adaptive Control Design update law 
(34) such that control law (35) insures &(t)  "+ 0 
as t "+ 00 for all unknown  constant  disturbance 
vector 8. 

4.2 Derivation of Adaptive Control Laws 

Now, we shall  derive an  update law (34) for the 
parameter  estimation using Lyapunov technique. 
We first  apply  control law (35) with  estimated 
parameter p. The resulting  system becomes 

21 + F2X1-t F I X ,  = - f 1 ( ~ 1 ) ~  - 0). (36)  

To derive an update law such that z1(t) "-t 0 as 
t -+ 03, take a Lyapunov  function as follows: 

V(z,p) = zTPz + Ilp - 0112. (37) 

Then 

0 

for  all T > 0, then 

It can be shown that x = z(t) is uniformly 
continuous,  thus it can be concluded that 

lim z(t) = 0,  (44) 
t-m 

and  thereby, 

lim &(t) = lim x l ( t )  = 0. (45) 
t-m t"rm 

5 .  SIMULATION STUDY 

In  this  study, we illustrate  the benefit of adaptive 
control law for a  simple  formation  manipulations 
of a spacecraft  triad. The adaptive  control law is 
used  for the formation  manipulation  and forma- 
tion keeping. We  use the  attitude control law  from 
Wang-Ihdaegh 1.11 for the  attitude manipulation. 

In this  example, we choose one spacecraft as the 
leader, the remaining two spacecraft as followers. 
The formation manipulation  scenario is as follows: 
all three  spacecraft  are  initially  clustered, then 
they move to  a  triangular formation (I); after 
100 second, the spacecraft move to a new trian- 
gular formation (11). Constant  disturbance forces 
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Fig. 2. Upper  Plot:  Dotted Line:  Leader.  Lower 
Plot: Solid  Line: Leader; Dashed Lines: Fol- 
lowers 

are imposed on  the  three spacecraft. We assume 
the disturbance  on the leader spacecraft  can  be 
measured,  and we  use the adaptive control  laws 
proposed  in this  paper for the followers. 

The  parameters for this  simulation  are  listed in 
Table I. The simulation  results  are shown in Figs. 
2 and 3. 
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